Determining the Minimum Iteration Period of an Algorithm1

نویسندگان

  • Kazuhito Ito
  • Keshab K. Parhi
چکیده

Abstract — Digital signal processing algorithms are repetitive in nature. These algorithms are described by iterative data-flow graphs where nodes represent computations and edges represent communications. For all data-flow graphs, there exists a fundamental lower bound on the iteration period referred to as the iteration bound. Determining the iteration bound for signal processing algorithms described by iterative data-flow graphs is an important problem. In this paper we review two existing algorithms for determination of the iteration bound. Then we propose another novel method based on the minimum cycle mean algorithm to determine the iteration bound with a lower polynomial time complexity than the two existing techniques. It is convenient to represent many multi-rate signal processing algorithms by multi-rate data-flow graphs. The iteration bound of a multi-rate data-flow graph (MRDFG) can be determined by considering the single-rate data-flow graph (SRDFG) equivalent of the MRDFG. However, the equivalent single-rate data-flow graph contains many redundant nodes and edges. The iteration bound of the MRDFG can be determined faster if these redundancies in the equivalent SRDFG are first removed. A previous approach has considered elimination of edge redundancy. In this paper we present an approach to eliminate node redundancy in the MRDFG. We combine elimination of node and edge redundancies to propose a novel algorithm for faster determination of the iteration bound of the MRDFG.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Incremental DC Algorithm for the Minimum Sum-of-Squares Clustering

Here, an algorithm is presented for solving the minimum sum-of-squares clustering problems using their difference of convex representations. The proposed algorithm is based on an incremental approach and applies the well known DC algorithm at each iteration. The proposed algorithm is tested and compared with other clustering algorithms using large real world data sets.

متن کامل

Determining the minimum iteration period of an algorithm

Abstract. Digital signal processing algorithms are repetitive in nature. These algorithms are described by iterative data-flow graphs where nodes represent computations and edges represent communications. For all data-flow graphs, there exists a fundamental lower bound on the iteration period referred to as the iteration bound. Determining the iteration bound for signal processing algorithms de...

متن کامل

A Metaheuristic Algorithm for the Minimum Routing Cost Spanning Tree Problem

The routing cost of a spanning tree in a weighted and connected graph is defined as the total length of paths between all pairs of vertices. The objective of the minimum routing cost spanning tree problem is to find a spanning tree such that its routing cost is minimum. This is an NP-Hard problem that we present a GRASP with path-relinking metaheuristic algorithm for it. GRASP is a multi-start ...

متن کامل

Determining the Iteration Bounds of Single-Rate and Multi-Rate Data-Flow Graphs1

ABSTRACT— Digital signal processing algorithms are described by iterative data-flow graphs where nodes represent computations and edges represent communications. In this paper we propose a novel method to determine the iteration bound, which is the fundamental lower bound of the iteration period of a processing algorithm, by using the minimum cycle mean algorithm to achieve a lower polynomial t...

متن کامل

Convergence theorems of an implicit iteration process for asymptotically pseudocontractive mappings

The purpose of this paper is to study the strong convergence of an implicit iteration process with errors to a common fixed point for a finite family of asymptotically pseudocontractive mappings and nonexpansive mappings in normed linear spaces. The results in this paper improve and extend the corresponding results of Xu and Ori, Zhou and Chang, Sun, Yang and Yu in some aspects.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995